580 research outputs found

    The Logic of Data Bias and Its Impact on Place- Based Predictive Policing

    Get PDF

    Latent Self-Exciting Point Process Model for Spatial-Temporal Networks

    Full text link
    We propose a latent self-exciting point process model that describes geographically distributed interactions between pairs of entities. In contrast to most existing approaches that assume fully observable interactions, here we consider a scenario where certain interaction events lack information about participants. Instead, this information needs to be inferred from the available observations. We develop an efficient approximate algorithm based on variational expectation-maximization to infer unknown participants in an event given the location and the time of the event. We validate the model on synthetic as well as real-world data, and obtain very promising results on the identity-inference task. We also use our model to predict the timing and participants of future events, and demonstrate that it compares favorably with baseline approaches.Comment: 20 pages, 6 figures (v3); 11 pages, 6 figures (v2); previous version appeared in the 9th Bayesian Modeling Applications Workshop, UAI'1

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks

    Towards understanding crime dynamics in a heterogeneous environment:A mathematical approach

    Get PDF
    Crime data provides information on the nature and location of the crime but, in general, does not include information on the number of criminals operating in a region. By contrast, many approaches to crime reduction necessarily involve working with criminals or individuals at risk of engaging in criminal activity and so the dynamics of the criminal population is important. With this in mind, we develop a mechanistic, mathematical model which combines the number of crimes and number of criminals to create a dynamical system. Analysis of the model highlights a threshold for criminal efficiency, below which criminal numbers will settle to an equilibrium level that can be exploited to reduce crime through prevention. This efficiency measure arises from the initiation of new criminals in response to observation of criminal activity; other initiation routes - via opportunism or peer pressure - do not exhibit such thresholds although they do impact on the level of criminal activity observed. We used data from Cape Town, South Africa, to obtain parameter estimates and predicted that the number of criminals in the region is tending towards an equilibrium point but in a heterogeneous manner - a drop in the number of criminals from low crime neighbourhoods is being offset by an increase from high crime neighbourhoods

    Crime Topic Modeling

    Full text link
    The classification of crime into discrete categories entails a massive loss of information. Crimes emerge out of a complex mix of behaviors and situations, yet most of these details cannot be captured by singular crime type labels. This information loss impacts our ability to not only understand the causes of crime, but also how to develop optimal crime prevention strategies. We apply machine learning methods to short narrative text descriptions accompanying crime records with the goal of discovering ecologically more meaningful latent crime classes. We term these latent classes "crime topics" in reference to text-based topic modeling methods that produce them. We use topic distributions to measure clustering among formally recognized crime types. Crime topics replicate broad distinctions between violent and property crime, but also reveal nuances linked to target characteristics, situational conditions and the tools and methods of attack. Formal crime types are not discrete in topic space. Rather, crime types are distributed across a range of crime topics. Similarly, individual crime topics are distributed across a range of formal crime types. Key ecological groups include identity theft, shoplifting, burglary and theft, car crimes and vandalism, criminal threats and confidence crimes, and violent crimes. Though not a replacement for formal legal crime classifications, crime topics provide a unique window into the heterogeneous causal processes underlying crime.Comment: 47 pages, 4 tables, 7 figure

    Routine Crime in Exceptional Times: The Impact of the 2002 Winter Olympics on Citizen Demand for Police Services

    Get PDF
    Despite their rich theoretical and practical importance, criminologists have paid scant attention to the patterns of crime and the responses to crime during exceptional events. Throughout the world large-scale political, social, economic, cultural, and sporting events have become commonplace. Natural disasters such as blackouts, hurricanes, tornadoes, and tsunamis present similar opportunities. Such events often tax the capacities of jurisdictions to provide safety and security in response to the exceptional event, as well as to meet the “routine” public safety needs. This article examines “routine” crime as measured by calls for police service, official crime reports, and police arrests in Salt Lake City before, during, and after the 2002 Olympic Games. The analyses suggest that while a rather benign demographic among attendees and the presence of large numbers of social control agents might have been expected to decrease calls for police service for minor crime, it actually increased in Salt Lake during this period. The implications of these findings are considered for theories of routine activities, as well as systems capacity

    Semi-Supervised First-Person Activity Recognition in Body-Worn Video

    Get PDF
    Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video

    Early Identification of Violent Criminal Gang Members

    Full text link
    Gang violence is a major problem in the United States accounting for a large fraction of homicides and other violent crime. In this paper, we study the problem of early identification of violent gang members. Our approach relies on modified centrality measures that take into account additional data of the individuals in the social network of co-arrestees which together with other arrest metadata provide a rich set of features for a classification algorithm. We show our approach obtains high precision and recall (0.89 and 0.78 respectively) in the case where the entire network is known and out-performs current approaches used by law-enforcement to the problem in the case where the network is discovered overtime by virtue of new arrests - mimicking real-world law-enforcement operations. Operational issues are also discussed as we are preparing to leverage this method in an operational environment.Comment: SIGKDD 201
    corecore